PNAS:浙大、西悉尼大学 | 植物耐旱和气孔进化新机理

 找回密码
 注册新帐号

QQ登录

只需一步,快速开始

小木虫»成果分享»PNAS:浙大、西悉尼大学 | 植物耐旱和气孔进化新机理
[成果分享]

PNAS:浙大、西悉尼大学 | 植物耐旱和气孔进化新机理

 楼主| xuyue_2017 发表于 2019-6-20 13:23  
查看: 81684|回复: 0|显示全部楼层 |阅读模式
​​
期刊:PNAS
主题:植物耐旱和气孔进化新机理
标题:Evolutionof chloroplast retrograde signaling facilitates green plant adaptation to land
影响因子:9.504
检测指标:K+、Ca2+、Cl−
作者:浙江大学/西悉尼大学陈仲华

英文摘要
Chloroplast retrograde signaling networks are vital for chloroplastbiogenesis, operation, and signaling, including excess light and drought stresssignaling. To date, retrograde signaling has been considered in the context ofland plant adaptation, but not regarding the origin and evolution of signalingcascades linking chloroplast function to stomatal regulation.

We show that key elements of the chloroplast retrograde signalingprocess, the nucleotide phosphatase (SAL1) and 3′-phosphoadenosine-5′-phosphate (PAP)metabolism, evolved in streptophyte algae—the algalancestors of land plants.

We discover an early evolutionof SAL1-PAP chloroplast retrograde signaling in stomatal regulation based onconserved gene and protein structure, function, and enzyme activity and transitpeptides of SAL1s in species including flowering plants, the fern Ceratopterisrichardii, and the moss Physcomitrella patens.

Moreover, we demonstrate thatPAP regulates stomatal closure via secondary messengers and ion transport inguard cells of these diverse lineages. The origin of stomata facilitated gasexchange in the earliest land plants.

Our findings suggest that the conquest of land by plants was enabled byrapid response to drought stress through the deployment of an ancestralSAL1-PAP signaling pathway, intersecting with the core abscisic acid signalingin stomatal guard cells.

中文摘要(谷歌机翻)
叶绿体逆行信号传导网络对于叶绿体的生物发生,操作和信号传导至关重要,包括过量的光和干旱胁迫信号。迄今为止,已经在陆地植物适应的背景下考虑了逆行信号传导,但没有考虑将叶绿体功能与气孔调节相关联的信号级联的起源和进化。

我们显示叶绿体逆行信号传导过程的关键元素,核苷酸磷酸酶(SAL1)和3'-磷酸腺苷-5'-磷酸(PAP)代谢,在陆生植物的藻类祖先 - 链霉菌藻类中进化。

我们发现SAL1-PAP叶绿体逆行信号在气孔调节中的早期进化基于保守基因和蛋白质结构,功能和酶活性以及物种中SAL1s的转运肽,包括开花植物,蕨类植物Ceratopteris richardii和苔藓Physcomitrella patens。

此外,我们证明PAP通过第二信使调节气孔关闭和这些不同谱系的保卫细胞中的离子转运。气孔的起源促进了最早的陆地植物的气体交换。

我们的研究结果表明,通过部署祖先的SAL1-PAP信号通路,与气孔保卫细胞中的核心脱落酸信号相交,对干旱胁迫的快速反应使植物征服土地成为可能。
Fig. 3. PAP-induced stomatal closure, guard-cell ROS and NO signaling, and ion transport are evolutionarily conserved across plant clades. (D–F) PAP regulates K+,Cl−, and Ca2+ fluxes from guard cells of three major clades. Data are averaged for control (0–10 min) and PAP (15–35 min). Data are means ± SE (n = 5–8).


即日起,中关村NMT联盟统筹安排全国NMT测试服务,如需开展NMT相关实验,请联系联盟。


旭月版权所有,转载请注明出处

PNAS:浙大、西悉尼大学 | 植物耐旱和气孔进化新机理
您需要登录后才可以回帖 登录 | 注册新帐号

本版积分规则  | 请遵守小木虫学术科研第一站管理条例,不得违反国家法律法规

Copyright © 2014-2020 小木虫学术科研第一站(xmuchong.com)All Rights Reserved.

公安备案:津公网安备 12011102000110号

     

ICP备案/许可证号:津ICP备14003772号-3

     

跟帖评论自律管理承诺书

     

优质科研网站认证证书

| 优秀信息服务互联网站

     © 2014-2020 小木虫学术科研第一站

网上有害信息举报中心      小木虫学术科研第一站管理条例      晓木虫® 小木虫®第41764267号
快速回复 返回顶部 返回列表